Sorption Science Webinars/Workshops Directory
Webinar: Study of particle cohesion/adhesion and wettability of powders and formulations | Prof. Williams
1079 Views •Webinar: Understanding Isotherm Shape and Isotherm Modelling from DVS Experiments | Dr. Daniel J. Burnett
1024 Views •Webinar: The Effect of Surface Properties on Granulation Performance
913 Views •Particle Engineering in Pharmaceutical Solids Processing
847 Views •Webinar: The Importance of Moisture in Pharmaceuticals and Food Materials by Surface Energy
832 Views •Webinar: Particle Engineering in Pharmaceutical Solids Processing
695 Views •Webinar: Analysis of Food Products by Dynamic Vapour Sorption
612 Views •Webinar: Surface energy analysis for measuring physicochemical properties of materials
528 Views •Webinar: The Surface Properties and Water Adsorption Behaviour of Hair Fibers
473 Views •Seminario web: Métodos experimentales para la captura de CO2 en presencia de vapor de agua
434 Views •Webinar: Polymer characterization by Vapor Sorption Methods with Dr. Daniel Burnett
232 Views •Webinar: Water Sorption and Gas Adsorption Measurements on MOFs
206 Views •Webinar: Capture of Hydrogen Sulphide and Sulphur Dioxide in MOFs
186 Views •Webinar: Battery Electrode Active Materials Characterization
8 Views •Webinar: BET Surface Area Measurements by Sorption Methods at Ambient Conditions
4 Views •Webinar: The effect of outgassing temperature on H2O & CO2 adsorption performance of MOFs & Zeolites
4 Views •Webinar: Moisture Sorption and Drying Kinetics by DVS Analysis
4 Views •Webinar: Aqueous and Gaseous Phase Characterization of Catalysts for the Carbon Dioxide Hydration Reaction
4 Views •Webinar: Challenges on specific surface area analysis of cellulosic materials
3 Views •Webinar: Analysis of Wood and Building Materials using Dynamic Vapour Sorption
3 Views •Webinar: Battery Electrode Active Materials Characterization
Nowadays many electronic devices are being operated by batteries, including everyday devices (e.g. laptop and smartphones), healthcare devices (e.g. toothbrush), tools, toys, and vehicles as well. The use of batteries is forecast to increase significantly in the upcoming years. Therefore, the development of long and high-performance batteries and also the need to recycle spent batteries in order to ensure the supply of critical raw materials increased significantly in the last years, but is a complex task since the individual batteries have rather complex structures and varying composition.
During the development of the battery materials, temperature stability is one of the key parameters besides energy density, power density, lifetime, charging rate, cost and safety. Furthermore, the understanding of the surface properties and interfacial interactions of the anode and cathode materials is crucial in order to improve and develop efficient manufacturing and recycling processes.
In this webinar we present the surface and interfacial properties of different cathode (LCO, NMC, LFP) and anode (natural and synthetic graphite) materials. Characteristic properties include the specific surface area, the surface energetics at different temperatures measured with inverse Gas Chromatography (IGC) as well as water and cyclohexane sorption behaviour by Dynamic Vapour Sorption (DVS). Furthermore, we are going to present some results on wettability characterization using optical contour analysis and the Washburn method, as well as bubble-attachment and analytical particle solvent extraction tests. We also discuss which challenges arise during the recycling of spent lithium ion batteries by using the separation process of froth flotation.
Dr. Sygusch and Dr. Kondor will, among other things, give a detailed introduction to the Inverse Gas Chromatography and Dunamic Vapor Sorption techniques. With a live Q&A to finish the session, this is an unmissable opportunity to gain fresh insight into this vitally important topic from two leading experts.
Views | |
---|---|
8 | Total Views |
8 | Members Views |
0 | Public Views |
Share by mail
Please login to share this video by email.